6,168 research outputs found

    Perturbative out of equilibrium quantum field theory beyond the gradient approximation and generalized Boltzmann equation

    Full text link
    Using the closed-time-path formalism, we construct perturbative frameworks, in terms of quasiparticle picture, for studying quasiuniform relativistic quantum field systems near equilibrium and non-equilibrium quasistationary systems. We employ the derivative expansion and take in up to the second-order term, i.e., one-order higher than the gradient approximation. After constructing self-energy resummed propagator, we formulated two kind of mutually equivalent perturbative frameworks: The first one is formulated on the basis of the ``bare'' number density function, and the second one is formulated on the basis of ``physical'' number density function. In the course of construction of the second framework, the generalized Boltzmann equations directly come out, which describe the evolution of the system.Comment: LaTeX2e, 20 page

    Improvement of the hot QCD pressure by the minimal sensitivity criterion

    Full text link
    The principles of minimal sensitivity (PMS) criterion is applied to the perturbative free energy density, or pressure, of hot QCD, which include the gs6lngs\sim g_s^6 \ln g_s and part of the gs6\sim g_s^6 terms. Applications are made separately to the short- and long-distance parts of the pressure. Comparison with the lattice results, at low temperatures, shows that the resultant `` optimal'' approximants are substantially improved when compared to the MSˉ\bar{MS} results. In particular, for the realistic case of three quark flavors, the `` optimal'' approximants are comparable with the lattice results.Comment: 14 pages, 9 figures, LaTe

    Collision of one-dimensional fermion clusters

    Full text link
    We study cluster-cluster collisions in one-dimensional Fermi systems with particular emphasis on the non-trivial quantum effects of the collision dynamics. We adopt the Fermi-Hubbard model and the time-dependent density matrix renormalization group method to simulate collision dynamics between two fermion clusters of different spin states with contact interaction. It is elucidated that the quantum effects become extremely strong with the interaction strength, leading to the transmittance much more enhanced than expected from semiclassical approximation. We propose a concise model based on one-to-one collisions, which unveils the origin of the quantum effects and also explains the overall properties of the simulation results clearly. Our concise model can quite widely describe the one-dimensional collision dynamics with contact interaction. Some potential applications, such as repeated collisions, are addressed.Comment: 5 pages, 5 figure

    KINEMATIC ANALYSIS OF LOWER LIMB IN FUTSAL BALL KICKING

    Get PDF
    The diameter of the futsal ball (200 mm) is smaller than that of the soccer ball by 20 mm, and the futsal ball also has lower resilience than the soccer ball. Because of these differences in the balls, it is thought that the kicking motions of futsal players are distinct from those of soccer players. No study has yet been conducted on the motion involved in kicking a futsal ball. The aim of this study was to clarify the difference between the motion involved in kicking the futsal ball with that involved in kicking the soccer ball

    Efficient implementation of the nonequilibrium Green function method for electronic transport calculations

    Get PDF
    An efficient implementation of the nonequilibrium Green function (NEGF) method combined with the density functional theory (DFT) using localized pseudo-atomic orbitals (PAOs) is presented for electronic transport calculations of a system connected with two leads under a finite bias voltage. In the implementation, accurate and efficient methods are developed especially for evaluation of the density matrix and treatment of boundaries between the scattering region and the leads. Equilibrium and nonequilibrium contributions in the density matrix are evaluated with very high precision by a contour integration with a continued fraction representation of the Fermi-Dirac function and by a simple quadratureon the real axis with a small imaginary part, respectively. The Hartree potential is computed efficiently by a combination of the two dimensional fast Fourier transform (FFT) and a finite difference method, and the charge density near the boundaries is constructed with a careful treatment to avoid the spurious scattering at the boundaries. The efficiency of the implementation is demonstrated by rapid convergence properties of the density matrix. In addition, as an illustration, our method is applied for zigzag graphene nanoribbons, a Fe/MgO/Fe tunneling junction, and a LaMnO3/_3/SrMnO3_3 superlattice, demonstrating its applicability to a wide variety of systems.Comment: 20 pages, 11 figure
    corecore